• 交警不顾安危跳入车内  制服疯狂逃窜酒司机 2019-04-15
  • 国家发改委:粤港澳大湾区规划纲要很快就会出台 2019-04-15
  • 人民网舆情监测室发布首份《京津冀“互联网+政务”发展研究报告》 2019-04-13
  • 雪地里,听温暖降临的声音 2019-04-09
  • China Fokus Staatsprsident Xi gelobt dem Volk zu dienen, whrend nationale Gesetzgebung Jahrestagung abschliet 2019-03-17
  • Java知识分享网 - 轻松学习从此开始!????

    体育彩票11选5今天开奖结果:华东15选5最新开奖号码

    Java1234官方群23:java1234官方群23
    Java1234官方群23:965165841

    006项目-百度云搜索引擎开源?。?!

    领取微信扫码登录Java实现视频教程

    Java1234 VIP资源!

    IT口袋网,几万G最新视频教程等你来学?。?!

    SpringBoot打造企业级进销存

    领取QQ第三方登录视频教程

    做活动,领取支付宝在线支付完整视频教程

    Java毕业设计定做(包查重)

    007项目-资源分享平台开源??!

    Java1234至尊VIP(劳动节特价活动)

    scikit-learn机器学习:常用算法原理及编程实战


    分享到:
    时间:2019-03-17 21:24来源:https://download.csdn.net/ 作者:转载
    scikit-learn机器学习:常用算法原理及编程实战 PDF 下载
    提醒:假如百度云分享链接失效,请联系站长,我会补上的。
    scikit-learn机器学习:常用算法原理及编程实战 PDF 下载

    转载自:https://download.csdn.net/download/tellsummer/10998550
     
    本站整理下载:
    提取码:e5qr
     
    用户下载说明:
    电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
    //product.dangdang.com/25234323.html
      
    相关截图:


    资源简介:

    华东15选5最新开奖号码 www.fjbbo.com 本书通过通俗易懂的语言、丰富的图示和生动的实例,拨开了笼罩在机器学习上方复杂的数学“乌云”,让读者以较低的代价和门槛入门机器学习。

    本书共分为11章,介绍了在Python环境下学习scikit-learn机器学习框架的相关知识,涵盖的主要内容有机器学习概述、Python机器学习软件包、机器学习理论基础、k-近邻算法、线性回归算法、逻辑回归算法、决策树、支持向量机、朴素贝叶斯算法、PCA算法和k-均值算法等。

    本书适合有一定编程基础的读者阅读,尤其适合想从事机器学习、人工智能、深度学习及机器人相关技术的程序员和爱好者阅读。另外,相关院校和培训机构也可以将本书作为教材使用。


    资源目录:

    前言

    第1章  机器学习介绍       1

    1.1  什么是机器学习   1

    1.2  机器学习有什么用      2

    1.3  机器学习的分类   3

    1.4  机器学习应用开发的典型步骤   4

    1.4.1  数据采集和标记       4

    1.4.2  数据清洗   5

    1.4.3  特征选择   5

    1.4.4  模型选择   5

    1.4.5  模型训练和测试       5

    1.4.6  模型性能评估和优化       5

    1.4.7  模型使用   6

    1.5  复习题   6

    第2章  Python机器学习软件包       7

    2.1  开发环境搭建      7

    2.2  IPython简介 8

    2.2.1  IPython基础     8

    2.2.2  IPython图形界面     13

    2.3  Numpy简介  15

    2.3.1  Numpy数组      15

    2.3.2  Numpy运算      19

    2.4  Pandas简介   32

    2.4.1  基本数据结构   32

    2.4.2  数据排序   34

    2.4.3  数据访问   34

    2.4.4  时间序列   36

    2.4.5  数据可视化       36

    2.4.6  文件读写   38

    2.5  Matplotlib简介     38

    2.5.1  图形样式   38

    2.5.2  图形对象   40

    2.5.3  画图操作   46

    2.6  scikit-learn简介    51

    2.6.1  scikit-learn示例 51

    2.6.2  scikit-learn一般性原理和通用规则 55

    2.7  复习题   56

    2.8  拓展学习资源      57

    第3章  机器学习理论基础       58

    3.1  过拟合和欠拟合   58

    3.2  成本函数      59

    3.3  模型准确性   60

    3.3.1  模型性能的不同表述方式       61

    3.3.2  交叉验证数据集       61

    3.4  学习曲线      62

    3.4.1  实例:画出学习曲线       62

    3.4.2  过拟合和欠拟合的特征   65

    3.5  算法模型性能优化      65

    3.6  查准率和召回率   66

    3.7  F1 Score       67

    3.8  复习题   67

    第4章  k-近邻算法    69

    4.1  算法原理      69

    4.1.1  算法优缺点       69

    4.1.2  算法参数   70

    4.1.3  算法的变种       70

    4.2  示例:使用k-近邻算法进行分类      70

    4.3  示例:使用k-近邻算法进行回归拟合      72

    4.4  实例:糖尿病预测      74

    4.4.1  加载数据   74

    4.4.2  模型比较   75

    4.4.3  模型训练及分析       77

    4.4.4  特征选择及数据可视化   78

    4.5  拓展阅读      80

    4.5.1  如何提高k-近邻算法的运算效率   80

    4.5.2  相关性测试       80

    4.6  复习题   81

    第5章  线性回归算法       83

    5.1  算法原理      83

    5.1.1  预测函数   83

    5.1.2  成本函数   84

    5.1.3  梯度下降算法   84

    5.2  多变量线性回归算法   86

    5.2.1  预测函数   86

    5.2.2  成本函数   87

    5.2.3  梯度下降算法   88

    5.3  模型优化      89

    5.3.1  多项式与线性回归   89

    5.3.2  数据归一化       89

    5.4  示例:使用线性回归算法拟合正弦函数   90

    5.5  示例:测算房价   92

    5.5.1  输入特征   92

    5.5.2  模型训练   93

    5.5.3  模型优化   94

    5.5.4  学习曲线   95

    5.6  拓展阅读      96

    5.6.1  梯度下降迭代公式推导   96

    5.6.2  随机梯度下降算法   96

    5.6.3  标准方程   97

    5.7  复习题   97

    第6章  逻辑回归算法       98

    6.1  算法原理      98

    6.1.1  预测函数   98

    6.1.2  判定边界   99

    6.1.3  成本函数   100

    6.1.4  梯度下降算法   102

    6.2  多元分类      102

    6.3  正则化   103

    6.3.1  线性回归模型正则化       103

    6.3.2  逻辑回归模型正则化       104

    6.4  算法参数      104

    6.5  实例:乳腺癌检测      106

    6.5.1  数据采集及特征提取       106

    6.5.2  模型训练   108

    6.5.3  模型优化   110

    6.5.4  学习曲线   111

    6.6  拓展阅读      113

    6.7  复习题   114

    第7章  决策树    115

    7.1  算法原理      115

    7.1.1  信息增益   116

    7.1.2  决策树的创建   119

    7.1.3  剪枝算法   120

    7.2  算法参数      121

    7.3  实例:预测泰坦尼克号幸存者   122

    7.3.1  数据分析   122

    7.3.2  模型训练   123

    7.3.3  优化模型参数   124

    7.3.4  模型参数选择工具包       127

    7.4  拓展阅读      130

    7.4.1  熵和条件熵       130

    7.4.2  决策树的构建算法   130

    7.5  集合算法      131

    7.5.1  自助聚合算法Bagging     131

    7.5.2  正向激励算法boosting     131

    7.5.3  随机森林   132

    7.5.4  ExtraTrees算法 133

    7.6  复习题   133

    第8章  支持向量机    134

    8.1  算法原理      134

    8.1.1  大间距分类算法       134

    8.1.2  松弛系数   136

    8.2  核函数   138

    8.2.1  最简单的核函数       138

    8.2.2  相似性函数       140

    8.2.3  常用的核函数   141

    8.2.4  核函数的对比   142

    8.3  scikit-learn里的SVM  144

    8.4  实例:乳腺癌检测      146

    8.5  复习题   149

    第9章  朴素贝叶斯算法    151

    9.1  算法原理      151

    9.1.1  贝叶斯定理       151

    9.1.2  朴素贝叶斯分类法   152

    9.2  一个简单的例子   153

    9.3  概率分布      154

    9.3.1  概率统计的基本概念       154

    9.3.2  多项式分布       155

    9.3.3  高斯分布   158

    9.4  连续值的处理      159

    9.5  实例:文档分类   160

    9.5.1  获取数据集       160

    9.5.2  文档的数学表达       161

    9.5.3  模型训练   163

    9.5.4  模型评价   165

    9.6  复习题   167

    第10章  PCA算法     168

    10.1  算法原理    168

    10.1.1  数据归一化和缩放  169

    10.1.2  计算协方差矩阵的特征向量  169

    10.1.3  数据降维和恢复     170

    10.2  PCA 算法示例   171

    10.2.1  使用Numpy模拟PCA计算过程  171

    10.2.2  使用sklearn进行PCA降维运算   173

    10.2.3  PCA的物理含义     174

    10.3  PCA 的数据还原率及应用       175

    10.3.1  数据还原率     175

    10.3.2  加快监督机器学习算法的运算速度     176

    10.4  实例:人脸识别 176

    10.4.1  加载数据集     176

    10.4.2  一次失败的尝试     179

    10.4.3  使用PCA来处理数据集       182

    10.4.4  最终结果  185

    10.5  拓展阅读    189

    10.6  复习题 189

    第11章  k-均值算法   190

    11.1  算法原理     190

    11.1.1  k-均值算法成本函数      191

    11.1.2  随机初始化聚类中心点  191

    11.1.3  选择聚类的个数     192

    11.2  scikit-learn里的k-均值算法     192

    11.3  使用k-均值对文档进行聚类分析    195

    11.3.1  准备数据集     195

    11.3.2  加载数据集     196

    11.3.3  文本聚类分析  197

    11.4  聚类算法性能评估     200

    11.4.1  Adjust Rand Index   200

    11.4.2  齐次性和完整性     201

    11.4.3  轮廓系数  203

    11.5  复习题 204

    后记       205
     


    ------分隔线----------------------------
    锋哥公众号


    武哥公众号

  • 交警不顾安危跳入车内  制服疯狂逃窜酒司机 2019-04-15
  • 国家发改委:粤港澳大湾区规划纲要很快就会出台 2019-04-15
  • 人民网舆情监测室发布首份《京津冀“互联网+政务”发展研究报告》 2019-04-13
  • 雪地里,听温暖降临的声音 2019-04-09
  • China Fokus Staatsprsident Xi gelobt dem Volk zu dienen, whrend nationale Gesetzgebung Jahrestagung abschliet 2019-03-17